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Received 15 December 2002
Published online 20 June 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. Green’s dyadic technique represents a powerful tool for calculations in electrodynamics, espe-
cially in modelling optical properties of nanoscopic objects. The method does not only provide field distri-
butions, but also maps of susceptibilities and densities of states. Whereas the formalism is well established
for dielectrics and electric fields, I present here a straight forward extension to tensors of both electric and
magnetic type as well as mixed ones and furthermore to the situation where objects with dielectric and
magnetic permeabilities are present together. As examples, characteristic field patterns are compared for
elementary dielectric and magnetic perturbations. Green’s tensors calculated for a coral structure reveal
that mixed susceptibilities can exhibit other symmetries than pure electric or magnetic ones. Maps of all
tensor components can thus give essential clues to the interpretation of near-field images.

PACS. 41.20.-q Applied classical electromagnetism – 78.20.Bh Theory, models, and numerical simulation
– 02.60.Cb Numerical simulation; solution of equations

1 Introduction

Nanofabrication techniques today offer the possibility of
tayloring optical properties on a microscopic scale, to
achieve highly localized field enhancements for exam-
ple [1–3]. Near-field scanning even allows mapping of op-
tical quantities in the vicinity of nanoscopic objects. The
influence of the probe tip and its shape on the detec-
tion process, however, is not at all obvious. This and
the fact that studies of a great variety of objects with
quite arbitrary shapes would be desirable makes numerical
modelling an important tool in near-field optics. Green’s
dyadic technique [4–7] provides a direct space integration
method to solve Maxwell’s equations. Although it has suc-
cessfully been applied to extended geometries like mul-
tilayer structures with translational symmetry in one or
two dimensions [8–11], it is best suited for problems with
nanoscopic objects respresenting a spatially limited per-
turbation in an otherwise homogeneous background, and
this is the situation for which the form of the theory is
presented here.

A pragmatic interpretation of near-field images con-
sists in regarding the influence of the tip as part of the
measurement process and trying to identify the optical
signal with a physical quantity as it would be without
the tip present. Once a near-field scanning optical mi-
croscopy (NSOM) setup has been characterized in this
way with the help of test samples, measurements of oth-
ers then yield pure sample properties instead of informa-
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tion about the sample-tip system only. Excellent agree-
ment between experimental results and calculations has
repeatedly shown that a photon scanning tunneling mi-
croscope (PSTM) normally maps the electric field, which
of course depends on the direction of incident waves. Ex-
amples include dielectric and metallic protrusions [12–14],
waveguides [15,16], chains of metal particles exhibiting
near-field squeezing [17] and metallic stripes suited for
surface plasmon propagation [18]. NSOM in illumination
mode with forbidden light detection, however, images the
local density of states of the electric field, a property de-
termined by the material distribution alone [19] as demon-
strated by Chicanne et al. [20] on an optical coral struc-
ture in analogy to quantum corals for electronic densities
of states [21]. The local density of states can be viewed
as the response to an ideal dipole source at the respective
point. Returning to PSTM (NSOM in collection mode),
recent experiments by Devaux et al. [22,23] surprisingly
showed that specially coated tips can map the local mag-
netic field. These observations have clearly brought to the
fore that measurement can distinguish between the elec-
tric and the magnetic field [24]. The NSOM signal was
identified to the magnetic field with the help of modelling
by Green’s dyadic technique [25]; sources and objects for
this case were still of dielectric type, though.

The sensitivity of the tips to the optical magnetic field
is made possible by a gold coating whose thickness has to
be adapted to the wavelength of the light used. Metal
cylinders or rings of dimensions of optical wavelengths
can sustain surface plasmon modes [26] with magnetic
dipole moment comparable or even exceeding the electric
dipole moment for frequencies in the visible [27]. Now,
one could think of taking structures with such magnetic
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permeability not only as detectors, but as objects under
investigation themselves; sources of magnetic dipole type
should also be considered. Thus also modelling fully in-
cluding magnetic effects is required.

To make the presentation somewhat self-consistent,
the Green’s tensor method as used for dielectric pertur-
bations and electric fields is briefly reviewed in Section 2.
Magnetic and mixed suceptibilities are then developed in
Section 3 still staying with dielectric objects. The situa-
tion with pure magnetic permeabilities is fully analogous
and shortly discussed in Section 4. With these prepara-
tions Green’s tensors for the generalized situation with
both dielectric and magnetic permeabilities are then con-
structed in Section 5. Whereas the densities of states can
be directly read off from the tensors, Section 6 describes
how to calculate the field distributions. Some examples
are finally given in Section 7.

2 Green’s dyadic technique

In near-field optics experiments we often deal with
monochromatic light, but as any wave packet can be de-
composed into a superposition of plane waves, it is without
loss of generality that we assume monochromatic electric
and magnetic fields with time dependence e−iωt. Maxwell’s
equations then read in cgs units:

∇ · E(r) = −4π∇ · P(r) (2.1)
∇ · H(r) = −4π∇ · M(r) (2.2)
∇ ∧ E(r) = ik0H(r) + 4πik0M(r) (2.3)
∇ ∧ H(r) = −ik0E(r) − 4πik0P(r) (2.4)

with k0 = ω/c. Without external charges, currents or mag-
netizations the polarization P and the magnetization M
are related to the fields by

P(r) =
ε(r) − 1

4π
E(r) and M(r) =

µ(r) − 1
4π

H(r) (2.5)

ε(r) and µ(r) may in general be tensors, that is direction
depending. Green’s dyadic technique as presented here can
be applied to solve Maxwell’s equations if only in a finite
region the permeabilities ε(r) and µ(r) differ from back-
ground values which for simplicity are both assumed to
be 1, although other constant background values εb and µb

would not at all complicate the procedure. Throughout
this section and the next we further assume µ(r) = 1 ev-
erywhere. In this case (2.3) and (2.4) can be combined to
give the wave equation

−∇∧∇ ∧E(r) + k2
0E(r) = −4πk2

0

ε(r) − 1
4π

E(r) (2.6)

where we have splitted the term proportional to E in a
homogeneous part on the left and an ε-depending part on
the right side. The latter is only present in a region A
where the dielectric function differs from the background,
that is where ε(r) �= 1.

Fig. 1. A given material distribution is divided into a back-
ground and some perturbation objects. The field at r caused
by some dipole source at r′ consists of the directly propagated
part and a contribution via the interaction with the objects.

The key concept of Green’s dyadic technique is the
tensor G0 satisfying

−∇∧∇∧ G0(r, r′) + k2
0 G0(r, r′) = −4πk2

0 1 δ(r − r′).
(2.7)

Derivatives are with respect to r and 1 is the unit
matrix. G0 is analytically known and with the help of the
scalar function

g0(r, r′) =
eik0|r−r′|

|r − r′| (2.8)

can be expressed as

G0(r, r′) = (1k2
0 + ∇∇)g0(r, r′). (2.9)

The meaning of G0 is the following: An electric
dipole p placed at r′ has the electric field G0(r, r′)p at r.
The influence of a planar surface (see Fig. 1) can be in-
cluded, which is mostly done in the so-called electrostatic
approximation [25]. G0 is then replaced by

Gh(r, r′) = G0(r, r′) + GS(r, r′) (2.10)

for which (2.7) remains valid (see Appendix A). Regard-
ing the right side of (2.6) as a perturbation −4πk2

0Q(r) a
solution of this wave equation is constructed by

E(r) = E0(r) +
∫

A

Gh(r, r′)Q(r′)dr′

= E0(r) +
∫

A

Gh(r, r′)χ(r′)E(r′)dr′. (2.11)

The integral is over region A where χ(r) = ε(r)−1
4π is

not vanishing, and E0(r) is a solution of the homogeneous
wave equation

−∇∧∇∧ E0(r) + k2
0 E0(r) = 0. (2.12)

As Q(r) = χ(r)E(r) depends on E(r) itself, (2.11)
is an integral equation, the implicit Lippmann-Schwinger
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equation, for E(r). If ε(r) only differs from 1 (or its back-
ground value) in a limited region A and we discretize
this region into a finite number of cells 1, . . . , N at lo-
cations r1, . . . , rN , equation (2.11) becomes

E(rn) = E0(rn)+
N∑

n′=1

Gh(rn, rn′)χ(rn′ )E(rn′)�v (2.13)

where �v is the volume of one cell. E0 is the field of the
incident wave as it would be without perturbing objects,
that is in the homogeneous medium or for the background
with a surface.

This now is a system of linear equations on
E(r1), . . . ,E(rN ), which can be solved by a matrix
inversion. In practice build 3N -vectors EA and E0

A
which contain all the components of E(r1), . . . ,E(rN )
resp. E0(r1), . . . ,E0(rN ), a 3N × 3N -matrix Gh of all
3 × 3-blocks Gh(rn, rn′) and a 3N × 3N -matrix V with
just the 3 × 3-tensors χ(rn) as diagonal blocks. The fac-
tor �v is also included in V . The last equation then reads

EA = E0
A + Gh V EA (2.14)

and solved for EA

EA = (1− Gh V )−1 E0
A. (2.15)

Once the electric field is known inside the perturba-
tion A, it can be calculated everywhere. Outside the per-
turbation (region B) we get

EB = E0
B + Gh V (1− GhV )−1 E0

A (2.16)

or

EB(r) = E0
B(r) +

N∑
n=1

N∑
n′=1

Gh(r, rn)V (rn)

× (1 − GhV )−1(rn, rn′)E0
A(rn′ ). (2.17)

We could solve for the electric field at several positions
in region B and gather these values in a vector EB. How-
ever, as (2.16) is no implicit equation to solve like (2.14),
it suffices to calculate the field at one position at a time.
If we do not take the big 3N × 3N matrices like in (2.16),
but 3×3 tensors, the matrix multiplications become sum-
mations over all positions in the perturbation region A,
of course. Beware that in (2.17) the two coordinates are
written outside the inverted tensor (1−GhV ). That means
you first have to invert the big 3N × 3N matrix and then
take the 3 × 3 block that corresponds to the coordinate
pair (rn, rn′).

From (2.16) we can read off the tensor G that leads
from the initial field E0(r), the field of a source or an
incident wave, to the resulting field E(r).

E(r) = E0(r) +
∫

A

G(r, r′)χ(r′)E0(r′)dr′ (2.18)

with

G = Gh + Gh V (1 − GhV )−1 Gh. (2.19)

In practice the integration over region A always be-
comes a summation over a finite number of perturbation
cells like in (2.13) or (2.17), which is implicitly understood
for all tensor contractions resp. written as multiplication
of big matrices in equations in the form of (2.14)-(2.16)
or (2.19). To see how (2.19) is inferred from (2.16) and
for further deductions to come it is useful to develop
(1− GhV )−1 into a series [6].

(1 − GhV )−1 = 1 + GhV + GhV GhV + . . .

= 1 + GhV (1− GhV )−1. (2.20)

G is the solution to the so-called Dyson equation [28]

G = Gh + Gh V G (2.21)

and in analogy to (2.7) fulfills [6]

−∇ ∧∇ ∧ G(r, r′) + k2
0(1 + 4πχ(r)) G(r, r′) =

− 4πk2
0 1 δ(r − r′). (2.22)

This G, which will be denoted GEE
ε from now on, is the

electric-electric susceptibility for a given configuration of
dielectric objects. That is, for objects with only ε (no µ)
as sketched in Figure 1, GEE

ε (r, r′)p is the electric field
that will result at r if an electric point dipole p is placed
at r′.

Once the electric field is known in the perturba-
tion region A, we can also calculate the magnetic field
everywhere outside the perturbations in the ambient
medium [22,23,25,29].

H(r) = H0(r) − ik0

∫
A

Q0(r, r′)χ(r′)E(r′)dr′ (2.23)

H0(r) is the initial field and a solution of

−∇∧∇ ∧ H0(r) + k2
0 H0(r) = 0 (2.24)

Q0 =




0 −∂g0

∂z
∂g0

∂y
∂g0

∂z 0 −∂g0

∂x

−∂g0

∂y
∂g0

∂x 0


 (2.25)

for a homogeneous background. In the electrostatic ap-
proximation Q0 is not modified by the presence of a sur-
face. Explicit expressions for G0, GS and Q0 can be found
in references [6,25,29] and in an additional file to this
article. −ik0Q

0(r, r′)p simply is the magnetic field at r
produced by an electric point dipole p at r′. In (2.23) the
magnetic field is inferred from the electric field and this
equation is only valid if the perturbations are dielectric,
that is, if the electric permeability ε in region A differs
from 1 (its background value) but the magnetic perme-
ability µ does not.

3 Magnetic and mixed susceptibilities

GEE
ε is the electric-electric susceptibility, that is,

GEE
ε (r, r′)p is the resulting electric field at r due to an
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electric point dipole at r′ with the influence of the ob-
jects present included. Analogously we would also like
tensors giving the magnetic field caused by an electric
point dipole, and the electric and magnetic fields due to a
magnetic point dipole, that is magnetic-electric, electric-
magnetic and magnetic-magnetic susceptibility tensors.

If the objects are purely dielectric, not magnetic, all
that has to be evaluated self-consistently is the electric
field inside the objects. All other propagators are known.
I therefore compose the four susceptibility tensors in this
case as follows:

GEE
ε = Gh

E + Gh
EV (1 − Gh

EV )−1Gh
E (3.1)

GHE
ε = −ik0Q

0
HE − ik0Q

0
HEV (1 − Gh

EV )−1Gh
E (3.2)

GEH
ε = ik0Q

0
EH + ik0G

h
EV (1 − Gh

EV )−1Q0
EH (3.3)

GHH
ε = Gh

H + k2
0Q

0
HEV (1 − Gh

EV )−1Q0
EH . (3.4)

Here I now denote the background propagator Gh for
the electric field by Gh

E , as depending on whether a sub-
strate surface is included in the background or not, the one
for the magnetic field Gh

H may be different. In the same
way, the tensor Q0 evaluating the magnetic field due to
an electric point dipole is indexed Q0

HE , and Q0
EH is the

tensor giving the electric field caused by a magnetic dipole
(see Appendix A). Gh

E , Gh
H , −ik0Q

0
HE and ik0Q

0
EH for a

homogeneous medium are just the dipole field formula [30]
written in a matrix form to cover all possible directions
of p. If εb = 1 and µb = 1 for the background medium
where the fields are to be evaluated, and if the electro-
static approximation is taken for the influence of a sub-
strate surface, only Gh

E gets a correction GS to G0. Gh
H is

approximated as G0, and Q0
HE and Q0

EH are equal to Q0

from (2.25).
GEE

ε has already been explained and GHE
ε can be

seen from (2.23) if the expression for the electric field
from (2.15) is inserted. For completeness I will neverthe-
less explain the construction of all four tensors here. If
the source at r′ in Figure 1 is an electric point dipole p,
its electric field is directly propagated to r by Gh

E ; this
is the first term in (3.1). The second term is the contri-
bution from the interaction with the objects. The initial
field in the perturbation cells is the one propagated from
the dipole to the objects also by Gh

E , the last factor in
the second term. Then the self-consistent solution of the
Lippmann-Schwinger equation (2.14) gives the resulting
field (1 − Gh

EV )−1Gh
Ep inside the objects. The perturba-

tions now themselves act as electric dipoles. The contribu-
tion of each cell on top of that of the background medium
is proportional to its susceptibility χ contained in V in
front of the parenthesis in (3.1) and it is propagated from
the object to r by Gh

E .
In GHE

ε the first term −ik0Q
0
HE is the magnetic field

of an electric dipole at r′ propagated directly to r. As the
perturbations are dielectric, they are excited by an elec-
tric field, propagated from the dipole at r′ to the objects
by Gh

E as before. To change from the initial to the result-
ing field at the locations of the objects, again (1−Gh

EV )−1

is put in front of that. The excess of the dipole strengths of
the perturbation cells over that of the background medium

is accounted for by V . Like the source dipole at r′, the ob-
ject cells represent electric dipoles, so their magnetic field
is propagated to r by −ik0Q

0
HE .

Let us now suppose that the source at r′ is a magnetic
point dipole m. To get its electric field somewhere, the
propagator to choose is ik0Q

0
EH . So ik0Q

0
EH is the first

term as well as the last factor in the second term in (3.3).
Again, given the initial electric field in the perturbations,
(1−Gh

EV )−1 turns it into the resulting electric field, that
add a contribution Gh

EV times themselves to the electric
field somewhere else at r.

The last case to consider is a magnetic source dipole
at r′ and the magnetic field to be evaluated at r. The direct
propagation of the magnetic field from the dipole to r is
described by Gh

H . Objects of dielectric type, however, react
to electric fields. Thus the second term in (3.4) has to be
started from the right with ik0Q

0
EH , giving the electric

field from the magnetic dipole at r′ at the places of the
objects. (1−Gh

EV )−1 makes it the resulting electric field,
V accounts for the dipole strengths of the object cells, and
−ik0Q

0
HE propagates the magnetic field of these electric

perturbation dipoles to r.
So far, the Green’s tensors in (3.1)-(3.4) have been

constructed and interpreted from a physical point of view.
A more formal mathematical argumentation will now be
given. As already mentioned earlier, GEE

ε is the tensor
satisfying (2.22), which but for the δ-term and the fact
that G is a tensor is the wave equation (2.6). In analogy,
an equation for GHH

ε is built from the wave equation for
the magnetic field

−∇∧ 1
ε(r)

∇ ∧ H(r) + k2
0 H(r) = 0. (3.5)

Differential equations for the mixed tensors can be
based directly on Maxwell’s equations (2.3, 2.4). A
term δ(r − r′) to sound out the effects of an electric
type dipole source has to appear in the same place as
the polarization P. The electric field it produces is then
described by GEE

ε and the magnetic field entering the
same equation by GHE

ε . Analogously a term δ(r − r′)
in the place of a magnetization M goes together with
the fields caused by a magnetic type dipole source given
through GHH

ε and GEH
ε . The defining equations for the

four Green’s tensors are given in (3.6)-(3.9). There is no
problem in GEE

ε and GHH
ε also appearing in the last two

relations as their properties are already determined by the
first two relations.

−∇ ∧∇ ∧ GEE
ε (r, r′) + ε(r) k2

0 GEE
ε (r, r′) =

− 4π k2
0 1 δ(r − r′) (3.6)

−∇∧ 1
ε(r)

∇ ∧ GHH
ε (r, r′) + k2

0 GHH
ε (r, r′) =

− 4π k2
0 1 δ(r − r′) (3.7)

∇ ∧ GHE
ε (r, r′) + i k0 ε(r) GEE

ε (r, r′) =

− 4π i k0 1 δ(r − r′) (3.8)

∇∧ GEH
ε (r, r′) − i k0 GHH

ε (r, r′) =

4π i k0 1 δ(r − r′). (3.9)
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The proof for the mathematical correctness of the
tensors (3.1)-(3.4) consists in verifying that they sat-
isfy (3.6)-(3.9). That GEE

ε solves (3.6) is discussed in de-
tail in [6]. The essential step is to replace the double ro-
tation acting on Gh

E in both terms of GEE
ε by using (2.7)

resp. (A.3). The proof that GHH
ε from (3.4) fulfills (3.7)

is presented in Appendix B; the deduction is complicated
by the position depending function 1/ε(r) between the
two derivatives. The equations for the mixed tensors can
be verified in a very similar manner also by making use
of (A.3)-(A.10).

The tensors GEE
ε , GHE

ε , GEH
ε and GHH

ε give suscep-
tibilities with all interactions via the objects present in-
cluded. They describe the reaction of the system to ex-
ternal charges, currents or magnetizations which are not
included in D = εE and B = µH (equations in this section
are for µ = 1 everywhere). So if instead of (2.6) and (2.4)
we have

−∇∧∇ ∧E1(r) + ε(r)k2
0E1(r) = −4πk2

0Pext(r) (3.10)

∇ ∧ H1(r) + ik0ε(r)E1(r) = −4πik0Pext(r) (3.11)

the solutions for the fields are

E1(r) = Eb(r) +
∫

GEE
ε (r, r′)Pext(r′)dr′ (3.12)

H1(r) = Hb(r) +
∫

GHE
ε (r, r′)Pext(r′)dr′ (3.13)

where Eb(r) and Hb(r) are the fields E(r) and H(r) cal-
culated in (2.18) and (2.23); they now constitute the new
background from the point of view of the external polar-
ization, as they satisfy the homogeneous differential equa-
tions, i.e. (3.10) and (3.11) with zero instead of Pext on
the right side.

In the same way with an external magnetization (3.5)
and (2.3) get changed into

−∇∧ 1
ε(r)

∇∧H2(r) + k2
0H2(r) = −4πk2

0Mext(r) (3.14)

∇ ∧ E2(r) − ik0H2(r) = 4πik0Mext(r) (3.15)

and solved by

E2(r) = Eb(r) +
∫

GEH
ε (r, r′)Mext(r′)dr′ (3.16)

H2(r) = Hb(r) +
∫

GHH
ε (r, r′)Mext(r′)dr′. (3.17)

Paying attention to whether even without the ex-
citations taken here as Pext and Mext there are any
fields Eb(r) and Hb(r) and avoiding counting such contri-
butions twice, the fields from (3.12) and (3.16) resp. (3.13)
and (3.17) simply have to be added to get the solution for
the case where both Pext and Mext are present at the
same time.

A fully equivalent approach consists in first combining
the external excitations as they would appear together
in the wave equations for the electric and the magnetic

field and then using only the pure electric and pure mag-
netic Green’s tensors to evaluate the resulting fields. One
then gets

−∇∧∇ ∧ E(r) + ε(r)k2
0E(r) = −4πk2

0Q1(r) (3.18)

−∇∧ 1
ε(r)

∇∧ H(r) + k2
0H(r) = −4πk2

0Q2(r) (3.19)

with

Q1(r) = Pext(r) +
i

k0
∇∧ Mext(r) (3.20)

Q2(r) = Mext(r) − i
k0

∇ ∧ Pext(r)
ε(r)

(3.21)

which are solved by

E(r) = Eb(r) +
∫

GEE
ε (r, r′)Q1(r′)dr′ (3.22)

H(r) = Hb(r) +
∫

GHH
ε (r, r′)Q2(r′)dr′. (3.23)

4 Magnetic perturbations

The situation that the objects only have magnetic per-
meabilities but no dielectric permeabilities differing from
the background is mathematically fully equivalent to the
one discussed in the last sections. The roles of the electric
and the magnetic field get interchanged. In analogy to V
we build the matrix M . The elements of M are zero but
for 3 × 3-blocks on the diagonal which are taken to be
the susceptibility tensors µ(r)−1

4π of the perturbation cells
multiplied by the volume �v of the cells. The four Green’s
tensors in this case are

GHH
µ = Gh

H + Gh
HM(1− Gh

HM)−1Gh
H (4.1)

GEH
µ = ik0Q

0
EH + ik0Q

0
EHM(1− Gh

HM)−1Gh
H (4.2)

GHE
µ = −ik0Q

0
HE − ik0G

h
HM(1− Gh

HM)−1Q0
HE

(4.3)

GEE
µ = Gh

E + k2
0Q

0
EHM(1− Gh

HM)−1Q0
HE (4.4)

and satisfy

−∇∧∇ ∧ GHH
µ (r, r′) + µ(r) k2

0 GHH
µ (r, r′) =

− 4π k2
0 1 δ(r − r′) (4.5)

−∇∧ 1
µ(r)

∇∧ GEE
µ (r, r′) + k2

0 GEE
µ (r, r′) =

− 4π k2
0 1 δ(r − r′) (4.6)

∇ ∧ GEH
µ (r, r′) − i k0 µ(r) GHH

µ (r, r′) =

4π i k0 1 δ(r − r′) (4.7)

∇ ∧ GHE
µ (r, r′) + i k0 GEE

µ (r, r′) =

− 4π i k0 1 δ(r − r′). (4.8)
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5 Total Green’s tensors

In general, the objects (Fig. 1) may have dielectric as well
as magnetic permeabilities and Green’s tensors for this
case will now be searched. If neither ε nor µ is unity ev-
erywhere, the wave equations for the two fields and the
two Maxwell relations containing the curl read

−∇∧ 1
µ(r)

∇ ∧E(r) + ε(r) k2
0 E(r) = 0 (5.1)

−∇∧ 1
ε(r)

∇∧ H(r) + µ(r) k2
0 H(r) = 0 (5.2)

∇ ∧ H + ik0 ε(r) E(r) = 0 (5.3)
∇ ∧E − ik0 µ(r) H(r) = 0. (5.4)

To derive defining equations for the tensors GEE
tot

and GHE
tot describing the reaction of the system to an elec-

tric dipole source, besides replacing the fields by tensors
the recipe is to make a point source appear in parallel
to the polarization term εE in (5.1) and (5.3). Equations
for the tensors GHH

tot and GEH
tot giving the reaction to a

magnetic dipole source are constructed by placing a point
source in parallel to the magnetization term µH in (5.2)
and (5.4). Thus the equations to solve in order to find the
total Green’s tensors are

−∇ ∧ 1
µ(r)

∇ ∧ GEE
tot (r, r′) + ε(r) k2

0 GEE
tot (r, r′) =

−4π k2
0 1 δ(r − r′) (5.5)

−∇∧ 1
ε(r)

∇ ∧ GHH
tot (r, r′) + µ(r) k2

0 GHH
tot (r, r′) =

−4π k2
0 1 δ(r − r′) (5.6)

∇ ∧ GHE
tot (r, r′) + i k0 ε(r) GEE

tot (r, r′) =

−4π i k0 1 δ(r − r′) (5.7)

∇∧ GEH
tot (r, r′) − i k0 µ(r) GHH

tot (r, r′) =

4π i k0 1 δ(r − r′). (5.8)

The first one, equation (5.5), is also found in ref-
erence [7], however, an explicit solution for arbitrary
three-dimensional geometries has so far only been given
for (3.6) or (5.5) with constant µ. Comparing (5.5) to (3.6)
from Section 3, the difficulty in finding GEE

tot now is the
function 1/µ(r) between the derivatives. Nevertheless, an
ansatz in the same form as (2.19)

GEE
tot = G∗ + G∗ V (1− G∗V )−1 G∗ (5.9)

with some yet unknown tensor G∗ is successful. It turns
out that GEE

tot satisfies (5.5) if G∗ is taken to be GEE
µ

from (4.4).
Analyzing the building scheme of GEE

tot helps to infer
the other tensors by “educated guess”. In GEE

tot , the ef-
fect of dielectric permeabilities of the objects is described
by the “convolution” with V in the form (5.9). Instead
of Gh

E as in (3.1) there is now GEE
µ , already accounting

for magnetic permeabilities of the objects, as the “back-
ground”. GEE

tot could also have been constructed the other

way round by first evaluating the Green’s tensors from
Section 3 only involving the dielectric permeabilities and
then inserting them in the expression from (4.4) to re-
place the background tensors Gh

E , Gh
H , Q0

HE and Q0
EH .

Analogously I infer two forms for each of the other three
tensors GHH

tot , GHE
tot and GEH

tot as well.

GEE
tot = GEE

µ + GEE
µ V (1− GEE

µ V )−1GEE
µ (5.10a)

= GEE
ε + GEH

ε M(1− GHH
ε M)−1GHE

ε (5.10b)

GHH
tot = GHH

µ + GHE
µ V (1 − GEE

µ V )−1GEH
µ (5.11a)

= GHH
ε + GHH

ε M(1− GHH
ε M)−1GHH

ε (5.11b)

GHE
tot = GHE

µ + GHE
µ V (1 − GEE

µ V )−1GEE
µ (5.12a)

= GHE
ε + GHH

ε M(1 − GHH
ε M)−1GHE

ε (5.12b)

GEH
tot = GEH

µ + GEE
µ V (1− GEE

µ V )−1GEH
µ (5.13a)

= GEH
ε + GEH

ε M(1− GHH
ε M)−1GHH

ε . (5.13b)

That these tensors in both their forms indeed sat-
isfy (5.5)-(5.8), can be checked by calculations similar to
the one in Appendix B, by inserting the tensors and mak-
ing use of the known properties (A.3)-(A.10), (3.6)-(3.9)
and (4.5)-(4.8). The simpler tensors from Sections 3 and 4,
of course, are just specific cases of the ones here. I shall end
this section with a few more remarks on the construction
of the general Green’s tensors and their meaning.

For the simplest case with a completely homogeneous
background Gh

E and Gh
H resp. Q0

HE and Q0
EH are identi-

cal. And if the presence of a substrate surface is accounted
for in the electrostatic approximation, Q0

HE and Q0
EH

are still the same tensor even in this case. The indices
in (3.1)-(3.4) and (4.1)-(4.4) nevertheless help to remem-
ber whether a Gh meant the background propagator of the
electric or the magnetic field and whether a Q0 was im-
plied to calculate the magnetic field of an electric dipole or
the electric field of a magnetic dipole. So the indices of the
background tensors in (3.1)-(3.4) resp. (4.1)-(4.4) tell us
by which tensor from (4.1)-(4.4) resp. (3.1)-(3.4) each one
has to be replaced to get the generalizations (5.10)-(5.13).

It is of no importance whether a discretization cell of
the objects is ascribed only an ε �= 1, only a µ �= 1 or
both. As explained in Sections 2 and 4, V is the matrix
with the dielectric susceptibilities χ = ε−1

4π and M is the
matrix with the magnetic susceptibilities µ−1

4π as diagonal
elements. There may be object cell coordinates figuring in
both or not. Every tensor contraction with V is over all
cells with ε �= 1, and every tensor contraction with M is
over all cells with µ �= 1.

The following argument is to show for GEE
tot as an ex-

ample that the two forms for each tensor in (5.10)-(5.13)
really give the same tensor. The identity is not obvious
even if the expressions from (3.1)-(3.4) and (4.1)-(4.4) are



U. Schröter: Modelling of magnetic effects in near-field optics 303

substituted for the tensors indexed ε resp. µ.

GEE
tot = Gh

E + k2
0Q

0
EHM(1− Gh

HM)−1Q0
HE

+ (Gh
E + k2

0Q
0
EHM(1− Gh

HM)−1Q0
HE)V

× [1− (Gh
E + k2

0Q
0
EHM(1− Gh

HM)−1Q0
HE)V ]−1

× (Gh
E + k2

0Q
0
EHM(1− Gh

HM)−1Q0
HE) (5.14a)

= Gh
E + Gh

EV (1 − Gh
EV )−1Gh

E

+ (ik0Q
0
EH + ik0G

h
EV (1 − Gh

EV )−1Q0
EH)M

× [1− (Gh
H + k2

0Q
0
HEV (1 − Gh

EV )−1Q0
EH)M ]−1

× (−ik0Q
0
HE − ik0Q

0
HEV (1− Gh

EV )−1Gh
E).

(5.14b)

Yet consider developing all (. . .)−1 into infinite series
following the pattern of (2.20). For both forms of GEE

tot
this will result in

GEE
tot = Gh

E + Gh
EV Gh

E + k0Q
0
EHMk0Q

0
HE

+ Gh
EV Gh

EV Gh
E

+ Gh
EV k0Q

0
EHMk0Q

0
HE

+ k0Q
0
EHMk0Q

0
HEV Gh

E

+ k0Q
0
EHMGh

HMk0Q
0
HE + . . . (5.15)

where there is no difference any more between the levels
at which V and M occur. The recipe to construct this
infinite series is the following: Start with Gh

E . Products
with n + 1 tensors Gh or Q0 can be deduced from the
ones with n tensors. For an n-product ending with Gh

E

you get one n + 1-product where simply V Gh
E is ap-

pended and one n + 1-product where the last Gh
E is

changed into k0Q
0
EH and Mk0Q

0
HE is appended. For an

n-product ending with k0Q
0
HE you get one n + 1-product

where V Gh
E is appended and one n + 1-product where

the last k0Q
0
HE is changed into Gh

H and then Mk0Q
0
HE

is appended. (In GEE
tot all terms begin with Gh

E or k0Q
0
EH

and end with Gh
E or k0Q

0
HE .) In this scheme all electric

and magnetic interactions to all orders are successively
added up. In the same way, to see the equivalence of the
two forms for GHH

tot , GHE
tot and GEH

tot , imagine all tensors
indexed ε and µ in (5.10)-(5.13) substituted by their el-
ementary representations and all (. . .)−1 developed into
series. The convergence of infinite series like (5.15) has
not been investigated, and for model calculations the com-
pact forms (5.10)-(5.13) with matrix inversions are taken,
of course.

For fixed arguments r and r′ the Green’s ten-
sors GEE(r, r′), GHH(r, r′), GHE(r, r′) and GEH(r, r′),
whether indexed ε for dielectric perturbations, µ for mag-
netic perturbations or tot for both, are 3 × 3 matrices
with complex elements. Quantities accessible to measure-
ment are correlation functions between field components
and these are given by the imaginary parts of the pure
tensors GEE and GHH and by the real parts of the mixed
tensors GHE and GEH [31]. For identical arguments r′ = r
the imaginary parts of the diagonal elements resp. of the
trace of GEE give the partial resp. total local densities

of states (LDOS) of the electric field [6,19,20,24,32]. The
imaginary parts of the diagonal elements resp. of the trace
of GHH analogously represent the partial resp. total local
densities of states of the magnetic field. The mixed sus-
ceptibility tensors, however, can only be interpreted as
response functions.

6 Field distributions

Of course, the fields can be calculated by first evaluating
the total Green’s tensors and then, generalizing (2.18),
building

E(r) = E0(r) +
∫

A

GEE
tot (r, r′)

ε(r′) − 1
4π

E0(r′)dr′

+
∫

A′
GEH

tot (r, r′)
µ(r′) − 1

4π
H0(r′)dr′ (6.1)

H(r) = H0(r) +
∫

A

GHE
tot (r, r′)

ε(r′) − 1
4π

E0(r′)dr′

+
∫

A′
GHH

tot (r, r′)
µ(r′) − 1

4π
H0(r′)dr′ (6.2)

with E0(r) and H0(r) the initial fields from a source or
an incident wave, A the region where ε �= 1 and A′ the
region where µ �= 1. However, if we are only interested
in maps of field distributions, the explicit calculation of
all the total Green’s tensors can be avoided. As done in
Section 2 for the electric field with dielectric objects, you
can just solve implicit Lippmann-Schwinger equations for
the fields inside the perturbations and then propagate
these by the free space Green’s tensors to the locations of
interest. In the general case with perturbations with ε �= 1
and µ �= 1 instead of (2.11) there are two interlinked im-
plicit equations:

E(r) = E0(r) +
∫

A

Gh
E(r, r′)

ε(r′) − 1
4π

E(r′)dr′

+ ik0

∫
A′

Q0
EH(r, r′)

µ(r′) − 1
4π

H(r′)dr′ (6.3)

H(r) = H0(r) − ik0

∫
A

Q0
HE(r, r′)

ε(r′) − 1
4π

E(r′)dr′

+
∫

A′
Gh

H(r, r′)
µ(r′) − 1

4π
H(r′)dr′. (6.4)

Numbering 1, . . . , N the cells with ε �= 1 and their loca-
tions r1, . . . , rN , and counting 1, . . . , M the cells with µ �=
1 and their locations r′1, . . . , r′M , in the discretization
these equations become

E(rn) = E0(rn) +
N∑

n′=1

Gh
E(rn, rn′)

ε(rn′) − 1
4π

E(rn′)�v

+ ik0

M∑
m′=1

Q0
EH(rn, r′m′)

µ(r′m′) − 1
4π

H(r′m′)�v (6.5)
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H(r′m) = H0(r′m)

− ik0

N∑
n′=1

Q0
HE(r′m, rn′)

ε(rn′) − 1
4π

E(rn′)�v

+
M∑

m′=1

Gh
H(r′m, r′m′)

µ(r′m′) − 1
4π

H(r′m′)�v. (6.6)

There may be vectors appearing in r1, . . . , rN as well
as in r′1, . . . , r′M . If a cell has ε �= 1 and µ �= 1 it is
counted as an electric dipole and a magnetic dipole. For
the formalism, it is of no importance if these are at the
same place or not. (6.5) and (6.6) constitute a system
of linear equations for all the E(rn) and H(r′m). To
solve it, build one long vector out of all the E0(rn) and
H0(r′m), one long vector out of all the E(rn) and H(r′m),
as well as a four quadrant matrix of all the coefficients.
Then (6.5) and (6.6) can be written as


1− Gh

EV −ik0Q
0
EHM

ik0Q
0
HEV 1− Gh

HM







EA

HA′


 =




E0
A

H0
A′


 . (6.7)

You get EA and HA′ inside the perturbation by
inverting this matrix


EA

HA′


 =




1− Gh
EV −ik0Q

0
EHM

ik0Q
0
HEV 1− Gh

HM




−1 


E0
A

H0
A′


 (6.8)

and then the fields elsewhere can be evaluated from (6.3)
and (6.4) with r outside the perturbations.

EB = E0
B + Gh

E,BAVAEA + ik0Q
0
EH,BA′MA′HA′ (6.9)

HB = H0
B − ik0Q

0
HE,BAVAEA + Gh

H,BA′MA′HA′ .

(6.10)

The indices A, A′ and B in (6.9) and (6.10) indicate
the region the arguments of the fields and tensors be-
long to. (6.9) and (6.10) together with (6.8) are equivalent
to (6.1) and (6.2), but much easier to implement.

7 Examples

In the first part of this section as quite basic examples
of calculated field maps I consider just one square-shaped
pad on a surface illuminated in total internal reflection
(Fig. 2). In Figure 3 the particle is dielectric with the same
isotropic ε as the substrate. Field maps in a plane shortly
above the particle show the following features [25]: For
s-polarization the pad appears as a dark contrast in the
electric field intensity with intensity enhancements at the
sides where there are strong field gradients. The magnetic
field intensity has an a little blurred out bright contrast
directly above the pad. For p-polarization the electric field
intensity is well confined above the pad whereas in the
magnetic field intensity the pad appears as a dark contrast
with comparatively widespread enhancements above the

Fig. 2. Model structure for calculations of field distribu-
tions shown in Figures 3–6: a square pad, 90 nm in x- and
y-direction, 30 nm in z-direction, on a glass substrate. The
perturbation is discretized into an array of 3 × 3 cubes of
edge 30 nm which are each ascribed ε and µ. The system is
illuminated by a linearly polarized plane wave in total internal
reflection (θ = 60o) at vacuum wavelength λ = 633 nm. Inten-
sities of the electric and the magnetic field are evaluated in a
plane 50 nm above the substrate.

edges perpendicular to the direction of propagation of the
incident wave.

Next I investigate a pad that has a magnetic, but no
dielectric susceptibility (Fig. 4). Compared to Figure 3, es-
sentially the patterns of the electric and the magnetic field
intensities as well as the ones for s- and p-polarization get
interchanged. The configuration is not absolutely equiva-
lent to Figure 3 though, as the pad is magnetic instead
of dielectric, but the substrate is still dielectric. Small dif-
ferences in the field patterns between Figures 3 and 4 are
due to this fact.

For the calculations in Figure 5 the pad was supposed
to have a dielectric as well as a magnetic susceptibility.
The strongest features that Figures 3 and 4 have in com-
mon are reproduced, namely the pad appearing bright
in |E|2 for p-polarization and in |H|2 for s-polarization
resp. appearing dark in |E|2 for s-polarization and in |H|2
for p-polarization. Furthermore, |E|2 for s-polarization
and |H|2 for p-polarization resp. |E|2 for p-polarization
and |H|2 for s-polarization are very similar to one another.
This will no longer be the case and the field patterns will
get more complicated if the dielectric and the magnetic
susceptibility are not chosen of equal strength.

Contrarily to dielectric permeabilities efficient mag-
netic susceptibilities at optical frequencies are normally
not provided by atomic or pure material properties. Sur-
face plasmon polariton eigenmodes of cylindrical metal-
lic structures of the dimensions of optical wavelengths,
however, build up electric and magnetic dipole moments
of comparable strengths or even a magnetic dipole mo-
ment exceeding the electric one. For the plasmon mode
of interest (labeled n = 1 in [27]) the electric as well
as the magnetic dipole moment are perpendicular to
the cylinder axis. Therefore, having in mind to give
a first very simple near-field model for objects poten-
tially exhibiting magnetic susceptibilities, i.e. rings ly-
ing on a surface or cylindrical holes in metal films [33],
in Figure 6 the calculations from Figure 5 are re-
peated with non-isotropic susceptibilities for the pad.
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Fig. 3. Field intensity maps showing |E|2 and |H|2 above the
object depicted in Figure 2 for both polarizations of the inci-
dent light. The pad material has ε = 2.25 and µ = 1 (no imag-
inary parts) like the substrate. The origin x = 0 and y = 0 is
above the center of the pad and the propagation along y of the
incident wave is from bottom to top in Figures 3–6. The nor-
malization is |E0| ≡ 1 for the incident wave below the surface;
in cgs E and H have the same units.

Fig. 4. Same as Figure 3, except that now the material of the
pad has ε = 1.0 and µ = 2.25.

Fig. 5. Like Figures 3 and 4, but with pad material ε = 2.25
and µ = 2.25.

Fig. 6. Like Figure 5, but with anisotropic pad material; εx =
εy = 2.25, εz = 1.0 and µx = µy = 2.25, µz = 1.0.
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The missing susceptibilities in z-direction lead to differ-
ences in the field patterns compared to Figure 5, espe-
cially for those fields for which the incident wave con-
tains a z-component, that is E for p-polarization and H
for s-polarization. There no longer is an enhanced z-
component directly above the pad much larger in in-
tensity than the smaller scale contrasts around the pad.
Field patterns analogous to the ones from Figure 6 will
also become more complex and of greater variety, if ε
and µ of the object are well of the same order, but no
longer of equal weight. Whereas contrasts and patterns
get (inter-)changed, the intensities remain in the same or-
ders of magnitude throughout Figures 3 to 6; absolute sig-
nal calibration, however, is often not available in NSOM
setup.

The second part of this section is on the different
Green’s tensors for the stadium structure from [20] (see
Fig. 7). Although feasible in the theoretical framework
developed in the preceding sections, the structure mod-
elled here has no magnetic susceptibility. Nevertheless, as
already seen from the field distributions, purely dielectric
objects are also able to modify the optical magnetic field
distribution in their vicinity [25]. And mixed and magnetic
Green’s tensor maps have not been shown so far, even for
dielectric perturbations. For brevity, only the imaginary or
the real part of each complex tensor component is plotted;
the choice is oriented at equations (3.13)-(3.16) from [31],
but is not at all meant to exclude a physical relevance of
the part which is not drawn.

For comparison ImGEE(r, r) is shown in Figure 8. The
diagonal components give the partial local densities of
states (LDOS) of the electric field, that is, ImGEE

xx (r, r, ω)
is proportional to ρE

x (r, ω), etc. Note that the densities
are given relatively to the constant value of the LDOS in
vacuum [20,32]. As GEE is a symmetric tensor, GEE

ij =
GEE

ji , there are only three independent off-diagonal com-
ponents of ImGEE , which are also drawn in Figure 8.
In the patterns of the diagonal elements the actual po-
sitions of the particles are relatively well discernable. The
xy-component has a rotational rather than a reflection
symmetry. In the xz- and the yz-components enhance-
ments blur out the image of the structure along the curved
resp. the straight sides of the stadium, and there is much
less contrast away from the particles inside as well as out-
side the stadium.

GHH like GEE is a symmetric tensor and the imag-
inary part of its six different components is drawn in
Figure 9. In the magnetic tensor, the diagonal xx- and
yy-components differ less from one another than in the
electric tensor. The weaker patterns inside and outside
the stadium are not identical, though. In GHH

zz the curved
and straight boundaries of the stadium give a quite un-
equal appearance in contrast to the rather uniform image
of all particles in GEE

zz . The off-diagonal components re-
semble the ones of the electric tensor.

All nine components of ReGEH(r, r) are plotted in
Figure 10. The mixed Green’s tensors are not symmet-
ric and although in our example the most dominant fea-
tures in the images are found with inverted contrast in

Fig. 7. Model structure for calculations of Green’s tensors con-
sisting of 36 metal particles on a glass surface (ε = 2.25). Each
particle is 90 nm × 90 nm across, 30 nm high, and discretized
into 3 × 3 cubical cells. λ = 543 nm and the dielectric func-
tion is ε = −6.65 + 1.98i for gold at this wavelength. Green’s
tensor’s are evaluated in a plane 100 nm above the substrate.

elements opposed to one another across the diagonal of
the matrix, the tensor clearly is not exactly antisymmet-
ric. In the mixed tensors, extreme values strongly con-
fined above the stadium boundary are found in the off-
diagonal xy- and yx-components. The diagonal xx- and
yy-components exhibit large contrasts around the four
corners of the stadium with a point symmetry with re-
spect to the center of the structure. In the zz-component
there are multifold symmetry patterns around individual
particles especially in the curved parts of the stadium.
Also noticeable for GEE and GHH , the dominant feature
of the remaining off-diagonal elements is the fact that the
particles appear bright on one side and dark on the other.
Maps of GHE(r, r) are very similar to GEH(r, r), although
some typical patterns get interchanged between compo-
nents. Whether it is possible to image the components of
the magnetic and mixed Green’s tensors including their
phase or sign in a near-field optics experiment, at present
remains an open question.

8 Conclusions

Using Green’s dyadic technique, it has been shown how
modelling in near-field optics can be extended to setups
with electric and magnetic sources as well as materials
having both dielectric and magnetic permeabilities. Elec-
tric, magnetic and mixed susceptibility tensors can be
constructed from analytically known basic components.
In fact, the dielectric and magnetic properties of a given
material distribution can be included sequentially by ap-
plying the same building scheme for the tensors twice. It
has also been demonstrated that the method for calculat-
ing field distributions based on the Lippmann-Schwinger
equation can be generalized in a straight-forward manner
to the case with permeabilities as well as sources of both
electric and magnetic type.
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Fig. 8. Components of −ImGEE(r, r) in a plane above the structure from Figure 7. Dimensions of the plot are in micrometers
and the limits of the equidistant color scales are given; values beyond these limits are also plotted in blue or red resp. and the
numbers in parenthesis are the minimum resp. maximum values from the calculation.

Fig. 9. Components of −ImGHH(r, r).
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Fig. 10. Components of ReGEH(r, r).

Finally, some example calculations for single pads as
basic cases as well as on a coral structure currently of
interest in near-field optics have been presented. Mod-
elling of all field and susceptibility components will be
of great help to interpret near-field optical images from
both collecting and illuminating probe devices. As for
metal cylinders with dielectric core [27] surface plasmons
in holes in metal films as fabricated by Ebbesen and co-
workers [33,34] can exhibit magnetic dipole moments com-
parable or even exceeding their electric dipole moments at
optical frequencies. Such objects might thus become of in-
terest as samples for near-field experiments. The type of
tip used in [22,23] can sustain circular plasmon modes
with considerable magnetic dipole moment and therefore
maps the optical magnetic field in a passive probe device.
A next important step would consist in using this kind of
tip in an active probe NSOM device. In this way it could
be possible to realize a magnetic dipole like point source
and perhaps image the optical magnetic density of states
in addition to the electric density of states [20].

Thanks to Alain Dereux, Jean-Claude Weeber and Christian
Girard who introduced me to Green’s dyadic technique and
Cédric Chicanne and Eloise Devaux whose experimental work
stimulated these theoretical investigations. I am also grateful
to Elke Scheer for the freedom to work on this subject.

Appendix A: Comment on background
with a surface

For completeness we would first like to note here that in
the limit r′ → r G0 has to be replaced by [11]

G0(r, r) = −4π

3
× 1 (A.1)

and Q0 is to be taken as
Q0(r, r) = 0. (A.2)

With a surface, the background propagator is Gh
E for

the electric and Gh
H for the magnetic field. If for the

medium above the surface εb = 1 and µb = 1, like G0
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−∇ ∧ 1

ε
∇∧ GHH

ε + k2
0 GHH

ε = −∇ ∧∇ ∧ GHH
ε −∇ ∧

(
1

ε
− 1

)
∇∧ GHH

ε + k2
0 GHH

ε

= −∇ ∧∇ ∧ Gh
H −∇ ∧∇ ∧ k2

0Q
0
HEV

(
1 − Gh

EV
)−1

Q0
EH −∇ ∧

(
1

ε
− 1

)
∇∧ Gh

H

−∇ ∧
(

1

ε
− 1

)
∇∧ k2

0Q0
HEV

(
1 − Gh

EV
)−1

Q0
EH + k2

0Gh
H + k4

0Q0
HE

(
1 − Gh

EV
)−1

Q0
EH

= −k2
0G

h
H − 4πk2

01δ
(
r − r′

) − k4
0Q0

HEV
(
1 − Gh

EV
)−1

Q0
EH − 4πk2

0∇∧ V
(
1 − Gh

EV
)−1

Q0
EH

−∇ ∧
(

1

ε
− 1

)
k2
0Q0

EH −∇ ∧
(

1

ε
− 1

)
k2
0Gh

EV
(
1 − Gh

EV
)−1

Q0
EH

−∇ ∧
(

1

ε
− 1

)
4πk2

0V
(
1 − Gh

EV
)−1

Q0
EH + k2

0Gh
H + k4

0Q0
HEV

(
1 − Gh

EV
)−1

Q0
EH

= −4πk2
01δ

(
r− r′

) − 4πk2
0∇∧ ε − 1

4π

(
1 − Gh

EV
)−1

Q0
EH −∇ ∧

(
1

ε
− 1

)
k2
0Q

0
EH

−∇ ∧
(

1

ε
− 1

)
k2
0Gh

EV
(
1 − Gh

EV
)−1

Q0
EH − 4πk2

0∇∧
(

1

ε
− 1

)
ε − 1

4π

(
1 − Gh

EV
)−1

Q0
EH

= −4πk2
01δ

(
r− r′

) −∇ ∧
(

1

ε
− 1

)
k2
0Q

0
EH −∇ ∧

(
1

ε
− 1

)
k2
0G

h
EV

(
1 − Gh

EV
)−1

Q0
EH

−∇ ∧
(

1 − 1

ε

)
k2
0 [1 + Gh

EV
(
1 − Gh

EV
)−1

]Q0
EH

= −4π k2
0 1 δ

(
r− r′

)
.

these tensors there satisfy

−∇r ∧ ∇r ∧ Gh
E(r, r′) + k2

0 Gh
E(r, r′) =

− 4π k2
0 1 δ(r − r′) (A.3)

−∇r ∧ ∇r ∧ Gh
H(r, r′) + k2

0 Gh
H(r, r′) =

− 4π k2
0 1 δ(r − r′). (A.4)

(For background permeabilities other than 1, k0 = ω/c
has to be changed into k0 =

√
εbµbω/c before evaluating

analytic expressions like (2.9) for these tensors. Besides
that Gh

E only gets an additional factor 1/εb and Gh
H a

factor 1/µb.) Eventually even including the influence of
the surface, call Q0

HE the tensor describing the magnetic
field caused by an electric point dipole and Q0

EH the ten-
sor giving the electric field due to a magnetic dipole. Be-
tween Q0

HE , Q0
EH , Gh

E and Gh
H we have the fundamental

relations

∇r ∧ Gh
E(r, r′) = k2

0 Q0
HE(r, r′) (A.5)

∇r ∧ Q0
HE(r, r′) = Gh

E(r, r′) + 4π 1 δ(r − r′) (A.6)

∇r ∧∇r ∧ Q0
HE(r, r′) · . . . = k2

0 Q0
HE(r, r′) · . . .

+ 4π δ(r − r′) ∇r′ ∧ . . . (A.7)

∇r ∧ Gh
H(r, r′) = k2

0 Q0
EH(r, r′) (A.8)

∇r ∧ Q0
EH(r, r′) = Gh

H(r, r′) + 4π 1 δ(r − r′) (A.9)

∇r ∧∇r ∧ Q0
EH(r, r′) · . . . = k2

0 Q0
EH(r, r′) · . . .

+ 4π δ(r − r′) ∇r′ ∧ . . . (A.10)

If it is just the free space propagators G0 and Q0,
these relations follow from (2.9) and (2.25). Here (A.5)
and (A.8) can be understood as definitions for Q0

HE

and Q0
EH . Then (A.6), (A.7), (A.9) and (A.10) follow

from these together with (A.3) and (A.4). It is assumed
here that the effect of the surface is calculated exactly,
which is in principle possible [6,9,10,25,28,31]. However,
for one dielectric surface, the situation typically encoun-
tered in near-field optics, the electrostatic approximation
usually suffices for modelling. The approximated tensors
no longer fully satisfy (A.3) and (A.6), but, of course, the
relations (A.3)-(A.10) for the exact background tensors
are the ones the proofs of the characteristic equations for
the Green’s tensors from (3.1)-(3.4) and (4.1)-(4.4) are
based on.

Appendix B: Tensor equation for GHH
ε

As an example here is the detailed proof that GHH
ε

from (3.4) solves (3.7). We use (A.3)-(A.10) and (2.20).

(see equation above)

All proofs of this type are written out in the supple-
mentary file maths.ps. A numerical algorithm for calcu-
lating the Green’s tensors is outlined in tensors.ps.
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